Achievements

PRIMARY APPRAISAL OF THE ORGANIC POLLUTION FOR THE SURFICIAL GROUNDWATER IN 7 CITIES OF EASTERN CHINA

Updated :11,06,2012

Liu Hong-ying1Su Jing-wen1, Zhang Tai-li1,Sheng Mang-ting1,Li Jin-zhu2, Ma Zheng-xin3

Nanjing Institute of Geology and Mineral Resources,Nanjing 210016,China;

2 Institute of Geological Survey of  ShanghaiShanghai 200072,China;3 Institute of Geological Survey of Jiangxi Province,Nanchang 330201,China

 


Water is the important strategic resource in our country.  And ground water is the most important consist part, constituting 1/3 of total water resource. It provides nearly 20% of total service water, including 70% of drinking water, 40% of irrigational water and 38% of industrial water. This using framework of water will not change in the short term.

The east area of China, with dense cities, has higher level of urbanization. But the geological environment in this area is vulnerable in some extend. With the development of social economy, contaminate of ground water becomes more and more serious, especially when the discharge of organic contaminants is increasing. Some of these contaminants are different to degrade, even have bio – accumulation and carcinogenicity,teratogenicity, mutagenesis or chronic toxicity. Therefore the organic contaminate of ground water has been a great threat to drinking security, ecological environment and human healthy.

The investigation of organic contaminate of ground water will give a scientific basis to ground water protection and pollution controlling. Meanwhile, the investigation will provide basic information to city water service security, grain security and ecology security. It also can give quotable experiences to other cities which are carrying on the organic contaminate investigation of ground water.

1 Sample Collection and Analysis

Seven cities are selected in this work, according to different city function such as agricultural zone, resident zone, commercial zone, industrial zone and garbage dump, to place the site of ground water samples (Table 1) .


Table 1. The distribution of ground water samples in 7 east cities

Sample Distribution

S

H

X

W

T

C

J

Agriculture ZoneA

7

1

2

1

3

3

2

Residential AreaR

4

1

1

1

1

2

1

Commercial DistrictC

2

1

1

1

1

1

1

Industrial centreI

5

1

2

2

2

3

2

Waster LandfillW

2

1

1

1

3

1

1

Total

20

5

7

6

11

10

7


Based on the field investigation, the wells which are typical, information sufficient, easy to operate, relatively stable and can coincide with the previous dynamic monitoring are selected.

Equipment Preparation: Top-empty bottlewell sealed polytetrafluoroethylene or glass container, polytetrafluoroethylene sealed membrane. Sample bottles of involatile organic compound should be immersed in nitric acid solution(1:1) for 24 hours, washed 3 times by clean water and 3 times by remove-organism water and 2 times by acetone, then drying for 1hour under the temperature of 360.

Before sampling, the water stayed in the well pipe should be cleaned. Sampling equipments or sampling bottles are cleaned by the water which needs to be collected. Then the water should be added into the bottle slowly, and the bottle should be filled with water and no bubble. Use polytetrafluoroethylene membrane at the mouth of the bottle, then put on the lid. Examine weather there are bubbles in the bottle, if bubbles are occur, the sample must be recollected. Collected samples should be stored under the condition of low temperature, if possible it can be stored under 4 or using ice, and the samples are placed isolated. 10% parallel samples are necessary, as well as 5% blank samples.

Analysis Method: There are 66 water samples are used to analysis in total. The quality of water and volatile halohydrocarbon use the method of gas chromatogram(GB/T 17130-1997). The quality of water and benzene series use the method of gas chromatogram(GB/T 11890-1989). The quality of water and BHC, DDT use the method of gas chromatogram(GB/T 7492-1987). Sixteen PAHs use the method of US EPA(52.2). Organic compound in drinking water use the method of liquid extraction and capillary MS-GS. All the testing are assumed by the laboratory of China University of Geosciences(Beijing). The equipment is gaschromatograph(HP GC-6890), number: 19990006. The whole processes accept quality control.

In all, 46 organic compound are tested in the ground water, including 8 halohydrocarbon, 8 benzene series, 16 PAHs and 14 organic pesticide containing chlorine.

2 Evaluation Method

2.1 Evaluation methodology on organic pollution in shallow groundwater

45 species of tests for organic compounds in surficial  groundwater is xicology indicators. Using the measured concentrations of groundwater component i with its detected limit (the comparison value C0max) and drinking water standards Cs value[1-2] (see table 2) as compared t evaluates surficial groundwater organic pollution .

No pollution : Ci≤ detected limitlight pollution : departure clearance limit <Ci≤1/2×drinking water standards valueModerate pollution : 1/2×drinking water standards value  Ci ≤ drinking water standards valueheavy pollution: drinking water standards value  Ci ≤ 5×drinking water standards value; Extreme pollution : Ci  5×drinking water standards value.

2.2 Methods of secure evaluation of the surficial groundwater organic

Surficial groundwater in a matter of safety uses environmental impact AS (AmbientSeverit) as evaluation methods, namely :

  ASi=Ci/CiA                      1

Type (1)  ASisome of the organic matter in the surficial groundwater for environmental impact; Cisome of the organic matter concentration in the surficial groundwater; CiAcompound i in the waters of target value, The Pollution Index Mathod was adopted to appraise the organic pollution of the surficial groundwater by reference to minus detected limit [3]and the drinking water source Standard of China[1]WHO[4]and U.S.EPA .

surficial groundwater organic environmental safety assessment applies the total environmental impact as assessment method. As long as the assumption that all organisms as same, and to the potential environmental hazards of the same, and that AS size and value of potential hazards [3] a linear relationship, a body of the surficial groundwater level environmental hazards could be expressed similar as the sum TAS (called for the total environmental impact) of the AS, namely :

        TAS=∑ASi                2

When TAS more than one, that toxic compounds of surficial underground waters potentially hazards on human health ;When TAs value less than one, its potential hazards is not distinct.

Conclusion and Discussion

3.1 Detected of organic pollutants in the surficial groundwater

Trichloromethane,then Tribromomethane of chlorinated solvents are mostly found in the surficial groundwater in 7 cities of Eastern(Fig.1,Table 2).

The ratios of founding in S,X and H city are high. The high points are distributed in industry area.

Benzenes are not found in 6 cities. The high points in S city are distributed in industry area and originate area.

Polycyclic aromatic hydrocarbons(PAHs) are mostly found in the surficial groundwater in 7 cities. The ratios of founding of AcenaphthyleneNaphthalene,Phenanthrene,Pyrene,Benzo(a)acenaphthene,Benzo(b)acenaphtheneAnthraceneFluoranthene, and Chrysene are high. The high points distribution are obviously difference in different cities.

The ratios of founding Oranochlorine Pesticides are high. There are α- BHC,γ- BHC, δ- BHC,p,p,-DDE, p,p,-DDD,andp,p,-DDT,thenβ-BHC,Hexachlorobenzene and p,p,-DDT. The high points are are distributed in the area of agricultural.  And then industry area and waste landfill.


 


Fig 1 The situation detecting the organic pollution for the surficial groundwater in 7 cities of Eastern China

Table 2 Most greatly detected consistency and the respective city function the organic pollution for the surficial groundwater in 7 cities of Eastern China

code

Organic component

detected limitC0max

Standard value Cs

Most greatly detected consistency - respective areaunit µg/LAgricultural chemicals ng/L)

S

H

X

W

T

C

J

1

1,1-Dichloroethylene

0.05

7

4.83-R

0.26-I

 

 

 

 

 

2

Dichloromethane

 

 

30.57-I

 

 

 

 

 

 

3

Trichloromethane

0.05

80

6.375-I

0.27-I

0.16-I

0.11-I

0.09-I

0.17-W

0.06-C

4

Trichloroethane

0.05

200

0.17-I

5.06-I

 

 

 

 

 

5

Carbon tetrachloride

0.05

5

0.043-I

 

 

 

 

 

 

6

Trichloroethylene

0.05

5

0.44-I

0.48-I

 

 

 

 

 

7

Tetrachloroethylene

0.05

5

1.96-I

0.07-I

 

 

 

 

 

8

Tribromomethane

0.05

80

13.62-I

0.22-I

0.14-W

 

0.17-R

0.32-A

 

 

benzene

0.5

10

6.19-I

 

 

 

 

 

 

 

Toluene

0.5

700

50.06-R

 

 

 

 

 

 

 

Ethylbenzene

0.5

300

40.87-R

 

 

 

 

 

 

 

p-Xylenes

0.5

500

2690-I

 

 

 

 

 

 

 

m-Xylenes

0.5

500

5950-I

 

 

 

 

 

 

 

Isopropylbenzene

0.5

500

39.55-I

 

 

 

 

 

 

 

o-Xylenes

0.5

250

3320-I

 

 

 

 

 

 

9

Naphthalene

0.004

 

0.23-I

0.12-I

0.075-I

0.34-R

0.078-I

0.45-R

0.078-C

10

Acenaphthene

0.0025

 

0.69-I

4.55-W

1.46-A

1.32-I

2.180-I

1.89-A

1.28-A

11

Acenaphthylene

0.003

 

 

0.099-I

0.019-A

0.016-I

0.140-I

0.023-R

0.052-A

12

Fluorene

0.002

 

0.35-I

 

 

0.015-I

0.072-I

0.14-R

0.20-C

13

Phenanthrene

0.0035

 

0.67-I

0.13-W

0.080-I

0.100-R

0.470-I

0.13-A

0.12-I

14

Anthracene

0.002

 

0.09-I

0.070-W

0.042-A

0.054-I

0.180-I

0.015-A

0.10-I

15

Fluoranthene

0.002

 

2.42-I

0.057-A

0.030-I

0.140-I

0.200-R

0.044-A

0.057-I

16

Pyrene

0.003

 

1.82-I

0.12-W

0.13-A

0.090-I

0.200-A

0.13-A

0.21-A

17

Benz[a]anthracene

0.005

 

7.66-I

0.22-W

0.35-I

0.320-I

0.210-A

0.19-A

0.19-A

18

chrysene

0.005

 

19.79-I

0.021-A

0.025-W

0.039-A

0.600-W

0.034-A

0.059-I

19

Benzo[b]fluoranthene

0.0025

 

1.25-I

0.33-W

1.54-I

0.360-I

0.150-A

0.23-A

0.39-A

20

Benzo[k]fluoranthene

0.003

 

0.73-I

 

 

0.028-A

0.41-A

0.023-I

 

21

Benzo[a]pyrene

0.003

 

 

 

 

 

0.092-W

 

 

22

Dibenz[a,h] Anthracene

0.0035

 

 

 

 

 

0.580-W

 

 

23

Indeno[1,2,3,-c,d]pyrene

0.003

 

 

 

 

 

0.170-W

0.52-A

 

24

Benzo[g,h,i]perylene

0.002

 

 

0.13-W

 

 

0.550-W

0.84-A

 

25

α-BHC

0.6

5000

460-I

3.04-W

0.78-I

3.69-A

3.88-A

5.21-A

10.45-C

26

Hexachlorobenzene

0.65

1000

100-I

1.58-W

1.03-I

2.28-I

0.79-A

 

4.88-I

27

β- BHC

0.4

5000

36.01-A

 

46.87-I

40.82-A

174-W

42.77-A

29.89-C

28

γ- BHC

0.65

5000

68.42-I

1.70-A

3.96-I

1.75-R

1.79-A

4.82-A

22.40-I

29

δ- BHC

5.75

5000

455.4-A

23.21-W

65.35-I

26.69-I

23.03-R

23.87-I

272.4-C

30

Heptachlor

0.65

400

51.30-I

 

 

 

1.75-R

 

 

31

Aldrin

0.4

30

6.574-A

 

 

 

0.43-R

0.90-A

1.35-I

32

Heptachloyepoxide

0.35

200

5.62-I

110.6-A

 

 

 

 

 

33

P,P’-DDE

0.05

1000

4.23-I

22.60-A

5.88-W

4.71-R

35. 3-A

1.34-A

21.39-C

34

Dieldrin

0.5

30

27.24-R

 

 

 

2.75-A

 

 

35

Endrin

9.65

2000

62.96-R

15.20-W

 

 

 

 

 

36

P,P’-DDD

0.35

1000

0.926-I

20.04-A

30.72-W

7.19-R

107.6-A

4.28-A

21.65-C

37

O,P-DDT

2.45

1000

 

10.05-W

37.01-W

44.63-I

218-A

11.28-A

19.05-A

38

P,P’-DDT

19.5

1000

23.91-I

798.0-W

318.8-W

441.6-A

906.8-A

103.8-I

228.3-A


3.2 Primary appraisal of the organic pollution of the surficial groundwater

Preliminary evaluation indicates surficial groundwater is mildly contaminated in seven cities .The surficial groundwater is moderately polluted by Dichloroethylene,DDTDieldrin ,Dichloromethane moderate- extreme pollution and 2-jiaben extreme pollution. It is moderately polluted by 7-lvhuanyang and DDT. It is moderately polluted by DDT in T city and BHC in J city(Table 3).


Table 3 Result in Primary appraisal of the organic pollution for the surficial groundwater in 7 cities of Eastern China

Pollution degree of organic component

No pollution

light pollution

Moderate pollution

heavy pollution

Extreme pollution

S

H

X

W

T

C

J

S

H

X

W

T

C

J

S

H

T

J

S

S

1,1-Dichloroethyl

71

75

100

 

100

100

100

27

25

0

 

 

 

 

2.2

 

 

 

 

 

Dichloromethane

24

 

 

 

 

 

 

51

 

 

 

 

 

 

13

 

 

 

8.9

2.2

Trichloromethane

42

75

50

80

64

70

71

58

25

50

20

36

30

29

 

 

 

 

 

 

Trichloroethane

87

75

100

 

100

100

100

13

25

 

 

 

 

 

 

 

 

 

 

 

Carbon tetrachloride

100

100

100

 

100

100

100

 

 

 

 

 

 

 

 

 

 

 

 

 

Trichloroethylene

64

75

100

 

100

100

100

36

25

 

 

 

 

 

 

 

 

 

 

 

Tetrachloroethylene

73

75

100

 

100

100

100

27

25

 

 

 

 

 

 

 

 

 

 

 

Tribromomethane

67

75

100

 

91

90

100

33

25

 

 

9.1

10

 

 

 

 

 

 

 

benzene

98

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2

 

 

 

 

 

Toluene

93

 

 

 

 

 

 

6.7

 

 

 

 

 

 

 

 

 

 

 

 

Ethylbenzene

93

 

 

 

 

 

 

6.7

 

 

 

 

 

 

 

 

 

 

 

 

Xylenes

96

 

 

 

 

 

 

2.2

 

 

 

 

 

 

 

 

 

 

 

2.2

Isopropylbenzene

98

 

 

 

 

 

 

2.2

 

 

 

 

 

 

 

 

 

 

 

 

BHC

 

 

17

67

54

50

14

100

 

83

33

44

50

71

 

 

 

14

 

 

Hexachlorobenzene

53

75

17

83

82

100

71

47

25

83

17

18

 

29

 

 

 

 

 

 

Heptachlor

53

 

100

100

91

100

100

27

 

 

 

9.1

 

 

 

 

 

 

 

 

Aldrin

50

 

100

100

91

80

43

50

 

 

 

9.1

20

57

 

 

 

 

 

 

Heptachloyepoxide

53

50

100

100

100

100

100

47

25

 

 

 

 

 

 

25

 

 

 

 

DDT

97

 

 

17

0

20

0

 

75

100

83

91

80

100

3.3

25

9.1

 

 

 

Dieldrin

57

100

100

100

91

100

100

40

 

 

 

9.1

 

 

3.3

 

 

 

 

 

Endrin

77

75

100

100

100

100

100

23

25

 

 

 

 

 

 

 

 

 

 

 


3.3 Evaluation of safety in the surficial groundwater

There are ten kinds of organics whose AS of surficial groundwater is higher than 1.And four kinds of organic whose AS close to 1.( In which o-Xylenes6.64, p-Xylenes5.38, Benz[a]anthracene4.64,Heptachlor1.71, Dichloromethane1.529, 

Xylenes1.19Dieldrin0.91, 1,1-Dichloroethylene0.69and benzene0.62 in City A, Heptachloyepoxide3.9, Trichloroethane1.69and P,P-DDT0.8 in City HDibenz[a,h] Anthracene193.33, Benz[a]anthracene32.84 and P,P-DDT0.91in City T.Howere the AS of surficial groundwater are all less than 1 in X,W,C,and J cities.

In this 7 cities,the AS of surficial groundwater form high to low is T(max 226.59,avr 38.87) S(27.67,3.04),H(4.02,2.09),W(0.56,0.23),X(0.43,0.22),J(0.35,0.2)And C(0.587,0.16).The organics of surficialgroundwater in City T,S and H displays obvious potential harm,and in City W,X,J and C displays unconspicuous.

3.4 Origin of organics in the surficial groundwater

In the geochemistry and in the environment geochemistry research, some characteristic compound indexs that unifies the local environment characteristic,the industry layout and the pollution discharges the type and so on is frequently used to judge the origin of PAHs.4 rings and above its having the macromolecular weight of the PAHs main originate from fossil fuel on high temperature burning, but low molecular weight (2 ~ 3 rings) originates from petroleum class pollution[6].In thermodynamics, Phenanthrene compared to Anthracene which is the same molecule isomer with Phenanthrene stabler, therefore it is higherPhenanthrene 's content than Anthracene ‘s in the petroleum.

Phenanthrene /Anthracene ratio (P/A) of PAHs originating from the petroleum usually is very high, but that of the high temperature burning source PAHs relative is lower. In the crude oil the P/A value probably is 50, but the P/A value in the pollution discharged by the motorcycle exhaust probably is 4. so the lower P/A value (4-10) suggests the multi-lings aromatic hydrocarbon main originates from high temperature burning[7].The ratio of Fluoranthene and pyrene (Fl/Py) is 1.4 that originates on behalf of the coal combustion product, the ratio is about 1 that originates on behalf of lumber burning,and the ratio is smaller than 1 that originate from the petroleum [8].


Table 4 Secure evaluation the organic pollution for the surficial groundwater in 7 cities of Eastern China

Organic component

Standard value (μg/L)

environmental impact idex[max(average)](×10-3)

S

H

X

W

T

C

J

1,1-Dichloroethylene

7A

690(67)

37 (9.3)

0

0

0

0

0

Dichloromethane

20A

1529(200)

0

0

0

 

0

0

Trichloromethane

60A

106 (28)

4.5 (1.1)

2.7(0.86)

1.8(0.3)

1.5(0.42)

2.8(0.47)

1(0.26)

Trichloroethane

3A

57(3.7)

1690 (420)

0

0

0

0

0

Carbon tetrachloride

2A

21.5(2.7)

0

0

0

0

0

0

Trichloroethylene

70A

6.29(2)

6.9 (1.7)

0

0

0

0

0

Tetrachloroethylene

40A

49(2.4)

1.8 (0.44)

0

0

0

0

0

Tribromomethane

69E

197(18)

3.2 (0.8)

2(0.34)

0

2.5(0.22)

4.6(0.46)

0

benzene

10A

620(31)

0

0

0

0

0

0

Toluene

700A

72(4.4)

0

0

0

0

0

0

Ethylbenzene

300A

140(8)

0

0

0

0

0

0

p-Xylenes

500A

5380(270)

0

0

0

0

0

0

Xylenes

500A

1190(600)

0

0

0

0

0

0

Isopropylbenzene

250A

150(7.9)

0

0

0

0

0

0

o-Xylenes

500A

6640(330)

0

0

0

0

0

0

Naphthalene

690E

0.33(0.27)

0.17(0.12)

1.8(0.34)

0.49(0.14)

0.43(0.078)

0.65(0.096)

0.11(0.043)

Acenaphthene

4000E

0.17(0.11)

1.1(0.74)

0.37(0.24)

0.33(0.22)

0.540.26)

0.47(0.2)

0.32(0.2)

Acenaphthylene

4000E

0

0.02(0.009)

0.0047(0.0028)

0.15(0.03)

0.035(0.0052)

0.006(0.002)

0.013(0.004)

Fluorene

40C

8.8(3.8)

0

2(0.34)

0.37(0.06)

1.8(0.16)

3.5(0.35)

5(0.79)

Phenanthrene

57E

12(6.4)

2.3(1)

0.83(0.56)

1.8(1)

8.2(1.4)

2.3(0.74)

2.1(1)

Anthracene

2000E

0.094(0.026)

0.04(0.011)

0.021(0.009)

0.03(0.02)

0.09(0.018)

0.007(0.005)

0.05(0.019)

Fluoranthene

800E

3(0.9)

0.072(0.02)

0.065(0.028)

0.17(0.07)

0.25(0.051)

0.055(0.024)

0.072(0.03)

Pyrene

8.3E

220(60)

14(4.4)

42.5(14)

17(7.7)

24(7.1)

16(3.6)

25(11)

Benz[a]anthracene

1.65E

4640(890)

130(75)

180(51)

91(58)

130(53)

120(31)

120(36)

chrysene

79.4E

250(44)

0.27 (0.07)

19(3.3)

4.1(0.9)

7.6(1.3)

0.43(0.13)

0.73(0.16)

Benzo[b]fluoranthene

31.5E

40(8.8)

10 (5.8)

11(3.8)

5.4(2.4)

8.3(3.1)

7.3(1.6)

12(4)

Benzo[k]fluoranthene

58E

13(2.1)

0

0

6.2(1.1)

7.1(1.3)

0.39(0.04)

0

Benzo[a]pyrene

0.0028A

0

0

0

0

32840(5820)

0

0

Dibenz[a,h] Anthracene

0.003E

0

0

0

0

193333(32730)

0

0

Indeno[1,2,3,-c,d]pyrene

58.5E

0

0

0

0

2.9(0.53)

8.9(1.3)

0

Benzo[g,h,i]perylene

2D

0

65 (16)

0

0

280(45)

0-0.42(0.06)

0

α-BHC

5A

92(12)

0.61(0.21)

0.16(0.026)

0.74(0.21)

1.1(0.35)

1.9(0.23)

2.1(0.55)

Hexachlorobenzene

1 B

100(19)

1.6(0.4)

1(0.17)

2.3(0.38)

0.79(0.13)

0

4.9(1.1)

β- BHC

5A

7.2(17)

0

9.37(1.6)

8.2(1.5)

35(4.1)

8.6(0.89)

6(1.1)

γ- BHC

2C

34.21(9.2)

0.850.3)

2(0.61)

0.88(0.5)

0.9(0.081)

2.4(0.67)

11(2.5)

δ- BHC

5A

91(13)

4.6(1.9)

13(2.6)

5.3(1.1)

4.6(0.93)

4.8(0.48)

54(10)

Heptachlor

0.03B

1710(280)

0

0

0

58(5.3)

0

0

Aldrin

0.03 B

220(42)

0

0

0

14(1.3)

30(5.1)

45(12)

Heptachloyepoxide

0.03 B

190(36)

3900(1250)

0

0

0

0

0

P,P’-DDE

1A

4.2(0.75)

23(6.2)

5.9(1.7)

4.7(1.2)

35(3.9)

1.3(0.13)

21(3.2)

Dieldrin

0.03 B

910(0.47)

0

0

41(6.9)

92(8.3)

0

0

Endrin

1.4E

45(7.4)

11(2.7)

0

0

0

0

0

P,P’-DDD

1A

0.93(0.06)

20(5.2)

31(7.8)

7.2(1.5)

110(13)

4.3(0.58)

22(0.53)

O,P-DDT

1A

0

10(2.5)

37(1.4)

45(24)

220(46)

11(2)

19(4.5)

P,P’-DDT

1A

24(1.1)

800(280)

320(110)

440(120)

910(130)

110(44)

230(110)

 

 

27670(3040)

4020(2090)

430(220)

560(230)

226590(38870)

587(160)

350(200)

P.S.AGB3838-2002 surface water source area of central drinking-water standard limiting value of specific project in China[1];B1998 Edition of Guidelines for drinking-water quality of WHO[4];C2002 Edition of the Drinking Water Standards of EPA[2];DChinese CJ/T206-2005 city water supply quality standard in China [5];EAMEGWH:Water Environmental Goals[3].


In S city social economy is developed and the industry class is complete. In the surficial groundwater , the biggest content of 3 rings of PAHs t account for the proportion to reach 59.22, but the content of PAHsoverall is decreases progressively by 4 rings >3 rings >5 rings > 2 rings > 6 rings orders , that of 2 rings +3 rings of PAHs approximately composes the total quantity 34.8%,and that of above 4 links of PAHs accounts for 57.1%.The change on the P/A value and the Fl/Py value is bigger,which respectively is 0.34-6.72 arrives > 50 and 0-8.15. Thus the organic matter originates from the high temperature to burn and the petroleum class pollution.

In other 6 cities,the surficial groundwater includes primarily 3 rings PAHs, while the content of 4 lings of the PAHs is bigger than 50% in only above the few samples.

In the H city social economy is developed, as constructs has trash power plant. The content of PAHs overall is decreases progressively by 3 rings >5 rings >4 rings > 2 rings > 6 rings orders . P/A value is 1.75-7.12 and Fl/Py value is 0-2.2. The organics originates from the high temperature to burn and the petroleum class pollution.

In X city,industry and agriculture was simultaneously developed with trash electricity generation. The content of PAHs overall is decreases progressively by 3 rings >5 rings >4 rings > 2 rings > 6 rings orders .P/A value is 0.68-8.52 and Fl/Py value is 0-1.03. The organics mainly originates from high temperature burning, time for pollution of the petroleum class.

Chemical industry is developed in the W city. The content of PAHs overall is decreases progressively by 3 rings >4 rings >5 rings > 2 rings > 6 rings orders . P/A value is 0.43-11.75 and Fl/Py value is 0.32-4.66. The organics mainly originates from pollution of the petroleum class, time for high temperature burning.

In the T city medicine and the chemical industry is developed. The content of PAHs overall is decreases progressively by 3 rings >4 rings >5 rings > 2 rings > 6 rings orders . P/A value is very big and Fl/Py value is 0-8.15. The organics mainly originates from pollution of the petroleum class, then form high temperature burning.

The C city expands quickly, and the agriculture is developed. The content of PAHs overall is decreases progressively by 3 rings >6 rings >4 rings > 5 rings > 2 rings orders . P/A value is very big and Fl/Py value is 0-2.09. The organics mainly originates from pollution of the petroleum class, a few form high temperature burnin.

The petrolem industry  has high proportion in J city. The content of PAHs overall is decreases progressively by 3 rings >5 rings >4 rings > 2 rings > 6 rings orders . P/A value is very big and Fl/Py value is very little. The organics mainly originates from pollution of the petroleum class.


Table 5 PAHs characteristic index the surficial groundwater in 7 cities of Eastern China

Characteristic index

Scope/mean value

S

H

X

W

T

C

J

Total quantity (ug/L)

1.82-24.90(7.91)

1.92-5.72(3.56)

0.98-3.42(1.73)

1.36-1.87(1.58)

0.54-3.58(1.94)

0.78-3.67(1.47)

0.58-1.65(1.16)

2rings(%)

0. 7.2-12.66(5.98)

2.1-2.6(2.3)

0-5.7(2.02)

0.7-18.2(5.4)

0-8.4(2.4)

0-26.6(4.7)

0-6.0(2.5)

3rings(%)

5.06-59.22(28.81)

83.8-92.0(87.5)

40.4-82.8(68.2)

41.5-85.2(67.8)

15.3-91.8(69.6)

9.3-100(71.2)

70.4-97.4(82.1)

4rings(%)

15.94-93.39(50.39)

0.7-7.9(4.6)

8.4-25.7(13.5)

8.5-33.5(17.7)

2.2-26.6(12.6)

0-31.2(9.2)

0.6-14.7(6.8)

5rings(%)

0-40.18(6.70)

3.8-5.8(5.0)

5.1-45.0(16.3)

0.6-21.6(9.1)

0-38.6(11.8)

0-17.4(5.0)

0-23.7(8.6)

6rings(%)

0

0-2.3(0.6)

0

0

0-20.6(3.6)

0-51.8(9.9)

0

P/A

1.22-7.46 –很大(2.66-)

1.75-7.12(3.74)

0.68-8.52(3.78)

0.43-11.75(3.41)

很大

很大

很大

 Fl/Py

0.34-6.72(2.58)

0-2.2(0.56)

0-1.03(0.38)

0.32-4.66(1.8)

0-8.15(2.86)

0-2.09(0.98)

0

 


Conclusion

The common halohydrocarbon occuring in surficial ground water in 7 east cities is Trichloromethane, the Tribromomethane is the following. The top concentration distribute in the industrial zone. Only one city’ssurficial ground water has benzenes, and the top concentration distribute in the industrial and resident zone. PAHs are the common compound in these 7cities, acenaphthylene,naphthalene,phenanthrene,pyrene,benzo(a)acenaphthenebenzo(b)fluorantheneanthracenefluoranthene and chrysene of PAHs have relatively high detecting rate. The top concentration distribute differently in different cities. α-BHC,δ-BHC,γ-BHC,p,p`-DDEp,p`-DDD and p,p`-DDTthen β-BHC,Hexachlorobenzene and  p,p`-DDT of Organochlorine Pesticides are mostly found in the surficial groundwater of  all the seven cities. The top concentration distribute in the agriculture zone, then industrial zone and waste landfill.

The surficial groundwater in all seven cities mostly are polluted in light degree, there exist moderate degree pollution in four cities and heavy degree pollution in one city.There are four organic compounds which have the value of AS larger than 1 or near to 1 among 14 organic compounds in the surficial ground water of these 7cities. The TAS is larger than 1 in 3cities, indicating that there is clear potential harm, possessed health risk..

According to the geochemistry parameters of the organic contaminant, and the environmental background of the surficial groundwater, various types industrial productionareas, use of fertilizer and Pesticides, waste landfill and the incomplete pyrolysis of the fuel may be the main source of the organic contaminant. This reflects the difference of economic development degrees and industry structure among different cities.



References

[1]      State Enviromental Protection Administration of China, General  Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.National Environmental Quality Standard forSurficial  Water GB3838-2002.2002.

[2]      U.S. Environmental Protection Agency. 2002 Edition of the Drinking Water Standards and Health Advisories.2002.

[3]      Wang Jing,et al.Data handbook of environment Assessment—the determinative value of toxic.1st ed..Beijing:Chemical Industry Press,1988,214,36l423.

[4]      WHO. Guidelines for drinking-water quality, 2nd ed. Addendum to Health criteria and other supporting information [M]. Geneva: World Health Organization, 1998,2:123-152.

[5]      Ministry of Conctruction P.R.China. Water Quality Standards For Urban Water Supply CJ/T 206-2005.2005.

[6]      Erwin l.Biodiwersity and life support impacts of landuse in LCA[J].Jouenal of Cleanr production, 2000,8:313-319.

[7]      Gschwend P M,Hites R A.Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States[J].Geochimica et cosmochimica Acta,1981,45:2359-2367.

[8]   Simoneit B R T.Organic matter of the troposphere characterization and sources of petroleum and pyrogenic residues in acrosols over in western United States[J].Atoms Environ,1984,18:51-67.